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TIME OF TOTAL CREEP RUPTURE OF A BEAM
UNDER COMBINED TENSION AND BENDING

STEFAN PIECHNIK and MARCIN CHRZANOWSKI

Technical University, Cracow, Poland

Abstract—Based upon two fundamental physical laws: Odqvist’s creep law and Kachanov’s brittle rupture
law, the problem of total rupture of a beam of rectangular cross section under a bending moment and an axial
tensile force has been considered. A power series method has been used to solve the basic integral equation and
to perform numerical calculations.

NOTATION

a(t) half of the height of the rectangular cross section at time ¢
a* height a(t) for which ¢, > 0 in the whole section
by half of the width of the rectangular cross section
m material constant (in Kachanov’s rupture law)
n material constant (in Odqvist’s creep law)

1 . .
P = ~ non-dimensional parameter

xa . .
q = — non-dimensional parameter

u
Si; components of the deviator of stress
t time
ty time of arising of first cracks
[ time of arising of first cracks under pure bending
tin time of arising of first cracks under pure tension
t, time of rupture of the cross section to the height a*
t, time of total rupture
tong time of total rupture under pure bending
X, ¥,z dimensional coordinates
a, b, e, di 8 F B coefficients of power series

4 di’ €5 .ﬁ? &is S5

A material constant (in Kachanov’s rupture law)
F area of the cross section of the bar
M bending moment
N axial tensile force
T temperature
K;, L,R;,S;, U, coefficients of power series
C,,C;,D,,D,,E,,E, integration constants
o, Bis Vis Vi coefficients of power series
aN . . . ; .
& = oM parameter (inversion of the non-dimensional eccentricity)
&; components of the strain rate tensor
&, rate of relative elongation change
1 =7 non-dimensional coordinate
a
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n¥* = —é coordinate determining the location of neutral axis

x rate of bar axis curvature change

u rate of relative elongation of the bar axis

o, normal stress

o, stress intensity

aq material constant (in Odqvist’s creep law)

o, = gou'/" parameter

T apparent variable in time dimension

¥ scalar function characterizing continuity of material
10M .

A = N parameter (non-dimensional eccentricity)

1. INTRODUCTION

RUPTURE problems of solid bodies have recently been the subject of intensive investigations,
both theoretical and experimental (see e.g. [5]). This interest is quite justified because a
knowledge of the rupture time due to the action of such factors as, for example, load,
temperature, aggressive medium, etc., permits the design of a safe structure.

Structures in an unfavourable environment, such as high temperature for metals, are
especially exposed to rupture danger. The increased creep, occurring under these con-
ditions, results in a gradual decohesion leading to a total rupture of the material. Of
course, every structure, undergoes rupture when the external load intensity exceeds a
certain limit value. In creep however, even a small load can cause a rupture after a certain
period of time has elapsed and, thus, rupture under creep conditions should be especially
carefully analysed.

The present paper considers the solution of a creep rupture problem under an uniaxial
nonhomogeneous state of stress, realized in a prismatic bar of rectangular cross section
by loading it with a bending moment M and an axial force N. The forced limitation upon
the shape of the bar cross section restricts the generality of the considerations, but, on
the other hand, simplifies it considerably, and it has no influence upon the qualitative
solution.

In determining the stress distribution, a knowledge of which is indispensable for the
analysis of the rupture process, we employ the formulae derived by S. Piechnik in his
papers [17-19].

The first papers in the subject area of this paper were those by H. Hencky (6] and
F. K. G. Odgqyvist [15]. Considerable progress was achieved by E. L. Robinson [21], L. M.
Kachanov [9, 10,12] and F. K. G. Odqvist [13, 16], in the field of brittle rupture and by
N. J. Hoff [7, 8], in the area of ductile rupture.

Chrzanowski [1-3] considered the problem of creep rupture with the time of arising
of the first cracks as an adopted criterion of destruction. Knowledge of the ratio t,/t,
(the time of total rupture to the time of arising of the first cracks) will make it possible to
appreciate the correctness of this criterion.

The problem of propagation of the brittle rupture front was considered by
Kachanov [11] for a prismatic bar loaded with a bending moment only. F. K. G. Odqvist[16]
derived a differential equation determining the rupture front motion for simultaneous
loading with an axial force and a bending moment ; he did however not consider it further
after indicating the mathematical difficulties connected with integration of this equation.
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Approaching this problem in a somewhat different way we have succeeded to overcome
these difficulties in the present paper.

2. BASIC PHYSICAL LAWS AND ASSUMPTIONS

According to Odqvist’s scheme (Fig. 1) the creep process is assumed to be established

from t = 0 up to the time of total rupture.
For an uniaxial state of stress the equation of state is assumed in the form [14]:

Gy = 60‘8.1’(1 -”)}”éx (21)

where o,, n are material constants.

€

QOdgvist’s scheme
,.-/x

Applied scheme
A

!
¥ t

-

FiG. 1.

The rupture process is described by a theory given by Kachanov in Ref. [11]. The basic
equation is:

— 22
dt b 4 @2
where A, m are material constants and ¥ is a function characterizing continuity of the
material.
The equation governing the motion of the rupture front is:

d¥ max ax)"‘

Am+1) f ‘ o) dt = 1. (2.3)
0

The equation does not refer to a fixed point but is connected with a current point in
which at the given t destruction occurs; thus, it describes the rupture front motion. The
form (2.3) still requires certain elucidations which will be given in further parts of the
present paper.

Among other assumptions adopted in the present paper, the following ones concern
the physical side of the phenomenon:

— constancy of temperature,

— unchangeability of external load during the destruction process,
— isotropy of the material,

— equal properties for compression and tension.



456 STEFAN PIECHNIK and MARCIN CHRZANOWSKI

In the geometry of the problem, the strains and the displacements are assumed to be
small.

3. INITIAL EQUATIONS

As is seen from equations (2.2) and (2.3) the stress distribution must be known to
determine both the time when the first cracks arise as well as the rupture front motion.
This distribution—according to results of Ref. [19]—can be written in the form

o, =0{l+gn'" for q <1

and for g > 1

jac(1+qn)”" for n > n*

{ —o(—1—qn)'" G

o, =
for n<n*

where

— — 1
9= 0. = oou'",

» and u are rates of change of curvature and relative elongation of the bar axis, respectively
and n = y/a—non dimensional coordinate (see Fig. 2), n* = —1/g—determines the
situation of the neutral axis.

The unknown values o, and g are determined from the equilibrium conditions which

are in integral form:
f J. o, dF = N
F

Jjaxde = M.
F

This system of equations will be solved by describing o, by power series. This makes
it necessary to consider the following two cases separately :

3.2)

qo < 1-—small eccentricity

g, > 1—large eccentricity.

In the sequel quantities at 1 = O will be denoted with the subscript zero.

A gradual destruction of the cross section and a decrease of its height-—maintaining
the point of application of the force N—will cause an increase of the bending moment,
and thus of the eccentricity as well. Considering the case of a small eccentricity the fact
should be taken into account that from a certain a = a* a change in the character of the
stress distribution will take place; a total rupture will occur for the case of a large eccen-
tricity. Because of it, the case of large eccentricity i.c. when at t = 0 g > 1-—will be con-
sidered first and next the obtained solution will be used to consider a small initial eccen-
tricity.
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4. LARGE ECCENTRICITY

4.1. Distribution of stress
For a large eccentricity the distribution of the normal stress has been shown in Fig. 2.
Developing the expression (1 + gn)*/" in power series the system (3.2) can be presented :

)
N = 4o.cq1/na(1 +n)/nb0 Z ﬂipm—l
i=1

(4.1)

o0
M = 4aacq1ina(1+n)fnb0 Z Of,-pzi

i=0
Ox (yov0$f<f')
Q, i
a Xo \ N ,//q (o)
=™ }Mo //
0, v :
a | o ._j# Neutralaxis
7| ottimet<t,
Fie. 2.
where
1 fori=1
ﬁl. = 1 2i~3
—— 1—jn fori>?2
G-z 1 (=m)
n
il fori=20
C!‘- =
1 2:‘—1(1 ) f
- - — —jn} forix>1
@)1 — 20— Dmn?-1 L4 V7
andp = 1l/q.

Forming a quotient (aN)/(10M)t and performing division of series one obtains

aN _ aN
10M ~ 10[M,+ N(a,—a))

Lo =Y yp¥! (4.2)
i=1

where

1 i-1
Y= _w% [ﬂi“ j;l “j')’i-f]'

+ The multiplier 16 was introduced to simplify numerical calculations.
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After inversion of this series
«Kx
pla)= Y vd* ! (a),
i=1
where

I
Vo= —, v, = =223, vy = ———3y,v%v, + vi),...
o 2 ' 1 3 y1( V2Viv2 +7¥3v1)

the stress distribution can be determined as:

N L a
— (y+ap)tn for ——<y<a
4gn+ 1)/nbo Z ﬁiPZi—l q
g, = ;1
= (=y—ap)" for —a<y< -2
4a(n+1)/nb0 Z Bip2i~1 q
i=1
or
M
— (y+ap)'n for —< < y<a
4 2n+ inpy aip2i q

-M

4a(2n+ 1)/nb0 Z aiPZi
i=0

q

The above formulae are valid when p < 1 ie. when d(a) < 8,
For t = 0, thus, when a = a,

50max = Z Vi
i=1

If after a time the section begins to crack then

1

oa) = — '
Mo dog—a
tof Mo+t |

(—y—ap)'" for —a<y< -2

4.3

(4.4.1)

4.4.2)

begins to decrease [member (a, —a)/a increases] and is permanently smaller than é,. Thus,

the introduced formulae are valid for an arbitrary ¢t if only for t = 0 we have

aoN
10M,

< 5Omax
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4.2, Time of arising of first cracks
For 0 <t <t there is a = a,, d = dy = const, p = p; = const,, y = yo, M = My,
and so in this period of time the stress is independent of time. The rupture time is deter-
mined by:
1

"= Am s D(maxo

which after making use of (4.4) takes the form

[4%50 Y. Bpd 1}
=1

ty = ",
V7 A(m+ DN™(1L+ poy™™

4.6)

or

[4aabo 5 p]

i=0

t, = . 47
T A(m+ DM + poyin @7

In the particular case when N = 0 we have p, = 0, and thus

£ = [4agbono]™
M Am+ DM

If we denote

n 2b0 I
4adboog = 4a3by— = 2 qdt g tin & 0
oY 0“0 002n+1 1 (] 0 a(l)/"
2n

SO
poa ) dmo ("1
MK My | Am+ Dani

This formula is in agreement with that obtained by L. M. Kachanov [11].
Distribution of continuity at time t = t; for y, > ayp, (for tension stress) is given by

the equation:
+ mfn
Y(yo,ty) = 1— ['70 Po:l . 4.8)

1+4po

4.3. Rupture time of the whole cross section
For t > t, the integral of equation (2.2) takes the form

[—pmtt = A(m+l)ft o™(v) dt (4.9)
4]
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where

_{fl[y(t)] for0 <1<t
L) 1] for ity <t <t,.

L. M. Kachanov suggested in his paper [11] the following notation for a similar problem
{pure bending):

1—-pmt! = A(m+1)f falne), ] dz {(4.10.1)
0

which after substituting (4.4) for o, will take the following form for our problem:

B (m+1)(4lz )'"f' [Y(T)—ciff)p(r)]'"/" i}
0 0 ,:a(n+ 1)/n(,[) Z ﬁ,-pZiAl(’L')]

The two unknown functions a(t) and p(r) occurring here are connected with each other
with dependence (4.2) and one of them e.g. a{t) can be eliminated.

The notation (4.10.1) is correct only in context with further operations which will be
carried out on this equation i.e. having been twice differentiated it will be converted into a
differential equation. This transformation will be possible only under certain supplementary
assumptions which will be discussed at a later time.

When the rupture front reaches the established point there is y(¢) = a(t) and ¥[a(t)] = 0
and equation (4.9) takes the form:

1= Am+ 1){jtl_f1[a(t)] dr+ jt Sola(), t] dr} 4.11.1)
0 21

dt. (4.10.2)

and (4.10)—the form suggested by Kachanov:
1= A(m+1)J- fala(t), 7] dr. (4.11.2)
0
It will be demonstrated that the above described transformations of the integral

equations (4.11.1) and (4.11.2) will in both cases result in the same differential equation.
Let us first consider equation (4.11.1) and differentiate it with regard to time

" of, da tof, d
=| == 2 %4 4, t), t
0=) %aa9t), a a drrrlaond
So
0fz B f
is obtained. After further differentiation we obtain:
2 2 t N2
o da\? 8f, d?a J‘ of, 0%f, da da 6f2
ed ——= —d
= Fat\dr) "t ar T dzz 2a &° +dt e @&

Assuming that the functions f;[a(t)], f>[a(t), 7] are linear with regard to a(t), the expression
containing second derivatives of these functions vanishes ; after elimination of the integral
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and arranging it, the following is obtained:

of,[da\?* d%a _
26a(dt) ~ s fla(t.] = 0.

Let us consider equation (4.11.2) and differentiate it with regard to time:

*of, da

0:6d

dt+ fyla(e), t].

The next differentiation yields:
d%a " 0f, da '62f2 da da 6f2
0=— | ==d +2— —=
a7 ), 9 ) e a T Ga
Under the adopted assumption with regard to linearity of the functions and elimination
of the integral we get:

of,[da\? d%a B
2%(5) —sz[a(t), ]=0

thus, identical equation with the one given above. As the notation (4.11.2) suggested by
Kachanov is more convenient it will be applied in further transformations.

For a clearer presentation of the proof the function p(t) was eliminated from equa-
tion (4.10.2). In subsequent calculations it seems more convenient, however, to eliminate
the function a(t) by means of equation (4.2), which after transformation with regard to a(1)
takes the form:

_M0+Nao iglyip
= N — —
+ Z ,yip21—1
i=1
Substituting (4.12) into the initial equation (4.10.2) the following relation

W) = yo+ao—¥t)

should be applied. The above mentioned relation is easily seen in Fig. 2. Then (4.10.2)
adopts the form

4.12)

1=¥""yo +ao—alt), t]—A(m+1( f[yoJrao a(r)+a(tp(r]"""

)
0 (n+1)/n Z szl 1T

If in the time ¢ the rupture front exceeds the established point of the ordinate v, so
yt) = a(t)

thus
a(t) = yo+ao—alr)

and thus

Yo +a0 = 2a(t)
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Moreover at the moment ¢ which is the rupture moment for the point in consideration.
the following takes place:

Yla(), 1] = 0.

Equation (*) after simple transformations will now be written in the form:

a(r) |™n
N mf, [p(t)——l—i—Z;l—a} )

I = A(m+ 1)(—) _ _
-

4b,

In order to fulfil the adopted assumption on linearity of subintegral functions with
regard to a(t), m = n must be put in. On one hand, it makes it possible to transform the
integral equation into a differential equation, on the other hand, it differs in a small degree
from the true ratio of these values. For metals for which values of the material constants
are known the ratio m/n oscillates within limits 0-60 and 0-75. Moreover, the assumption
m = n has also a physical interpretation. It has been established experimentally that under
pure tension the elongation of bars made of the same material is constant at the time of
the brittle crack, independent of the value of the stress and the rate of elongation change
ie.

t,&, = const. (4.13)

For tension

P S

: A(m+ )%
and according to Norton

¢, = Ba}
After substituting one obtains:
%
Im a_:‘ = const. 4.14)

The above given equation is true only in case when m = n.
Making use of the dependence (4.12) and of the adopted assumption m = n one can

write :
2 GRS B D YT S CJ]
plo)— 142 —

. 2i—1t . i 2i—1 T
1 A( +1)(N)m( N )MJ_, ; YiP () i;]/p ()
= m e
4b My+Na > -
of WMo Rl o Y 5@
i=1

—dr.

Tm

[Zmﬁ“wq
i=1

0,1+ Y yp* (1) (4.15)
i=1
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Having twice differentiated (4.15) the following is obtained:

& dp\?
de+[K1+K2+K4+K5+K6](d—I;) -0 (4.16)

where K; denotes:

Z Qi-D@i=2yp*>
K, = = = z a;p

Z (2i—1)y =1

where
=232
71
_ 1 _
a, = —(4-5y;—-3a,y,),
71
1 _ _
= —(6Ty,—3a,y,— 5a,y73), ...,
Y1
and
0,1) Qi—1yp*-2
K, = -2—"— = 3 bp',
0,1+ Y yp*-t  7°
i=1
where
EO = —2)’1,
Bl = —’VIBO’
52 = _63’2—51)’1,
53 = —Vll_’z—yzl;o,--.,
and



464 STEFAN PIECHNIK and MARCIN CHRZANOWSKI

where
1 m
e ==
€t )’1( 2)
_ 1
Cop = ——,
71
_ 1 R
¢y = f(l_“/zc—l)»
71
_ 1 _
CZ = _—:_(1+VZCO)7"'3
71
and
K, = K)K; = Z dp'
i= -1
where
a_l = E()E,‘ = m_2
670 = E_lbl‘i"éol_)o
~ i+1
d, = bjEi_,j
j=0
and
K — ___1_: i (_1)i+1pi
° l+p <o
Y, Qi—-1Dpp*? o
K = mi=0 _ = mp~ '+ Z éiP2i~1’
Z ﬁ_pZi‘l i=1
Fr
where
e, = Zm&,

2
e, = 2m(2B3—[3§),
€3 = 6m(ﬁ4_ﬁzéz_ﬁ3é1), R

Denoting now

K=K, +K,+K,+Ks+Kg= Y Ry

i=-1

where
R_, =2m—1), Ry = bo+dy, Ry = L+a,+b,+d; +¢,,...
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the equation (4.16) will be written in form

d2p o . dp 2
- rH—] =0 417
o2 £ w3 @)
Initial conditions will have the forms:
{(a) for t =t,
pit) L po = Y vod ! (4.18.1)

i=1

(b) for t = t, dp/dt is calculated from formula (4.15) after differentiation, viz.

2 vsp%i"] [0, I+ 3 vip%i"]

dp , 1+p li,‘:
gy = o Li=1

. oy = 5 {4.18.2)
- t i )
dtlems Y0y Q-
i=1
Determining
A= (1+po) 3 vps ™"
i=1
and
05 1+ Z .},ip(z)i“l ©
B=—— 7! = Y fivb
0,1Y i-1ppd> =°
i=1
where
1 Y2 7 Y2
=_’ =1’ =—-3-———’ fv-——"“ Ty e
fO 7, fl f2 s 3 i
and performing subsequent multiplication
AxB =} &b
i=1
where
gi=1 g =1+, gy =ni+f)+v2fes -
the condition (4.18.2) is presented in form:
, 1 2 .
Po= 5= Y &ph. (4.18.2a)
1 i=1

For fibres under compression at t = 0 the integral in formula (4.15) should be taken
within the limits ¢*, f, where t* denotes the time when the neutral axis reaches the con-
sidered point. It can easily be shown, that then too, the integral equation can be trans-
formed—in the manner discussed above—into the differential equation (4.17). It should
be stressed, however, that for these fibres the material constants would be functions of
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the variable y and time ¢, as effect of pressure. Application of equation (2.2) is, thus, in this
period a certain approximation of the solution of the discussed problem.
The integral of equation (4.17) is found by substituting

dp d’p dF
L= Fp), —=-—Fp)
T (p) i " d (p)
The equation will take the form:

dF i .

—+ RpHF =0.

dp (1‘:2} lp)
Separation of variables and bilateral integration gives:

by

exp(—- Y Ri pi+1), (4.19)

F=D,

pr- iZoi+1

where the integration constant D, is calculated from the condition that for ¢t = t, we
have p = po and F = py. Thus
R - R i+ 1
D, = p; “lex ——l t .
1 = PoPo p(i§01+1p0 )

By developing the exponential function into power series and making use of (4.18.2a)

the following is obtained:
| N > )
D, = 5‘[2 gipb][z SiP:):'Pg"
tili=1 i=0

where
1 1 1 1 R, 1
SQ = 1, S} = RQ, SZ = *2‘R1 +'2'!Rg, S3 = §R2+‘2“!‘2R97+§‘!R8, PN
Multiplication of the series gives
pR_1+l o0 )
D, = -2 Y Uph (4.20)
2ty =

where
Upg =1, Up = 8181 +582---
i+1
Ui: Z g_,vS,-_j+1 fOI'lZ 1
ji=1
Introducing the former variable into (4.19) and separating the variables, one gets subse-
quently:

o0

R, .
Rt —p'*t}dp=D,dt.
p exp(Zin ) p=D,

i=0

Making use of the development of the exponential function into a power series and
integrating it bilaterally we have:

i S, .
Yo g = Dat4 Dy (4.21)
i=0 =1
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D, is determined from the conditions (4.18)

y bRt Dyt 4.22
; 1+R +1p T (4.22)
Thus
L O S
i+R_ +1 1 i+R_1+1
' — T+ Dyt
=Z i+R_ 1+1p ,201+R 170 !
SO
0 ) =} Si ;
t Z +R 1+1 Po .Zoi+1z_1+1pﬂh+1
t_: = —2= — +1. (4.23)
! ZU:‘PO Pg_lﬂ Z UiPé)
i=0 i=0

The rupture time t = ¢, is obtained for a — 0, thus, for p — 0 as well [on the grounds
of (4.12)]

i S;
X TR aibo
i< 1
! z UzPo
i=0
5. SMALL ECCENTRICITY
5.1. Stress distribution
Acting as in point 4 internal forces can be expressed
N = 4abooc[1'+ Y diqz'}
=t (5.1)

M = 4a2b00'c Z e,—qu_l

i=0

where
1 2i—1

d=—r—- 1—j
+= Girnme L a-m
1 2i—-2
ei = P i~ 1_ 'n .
Qi+ 1) 11.1:[1 (1=jn)
Forming a quotient (10M)/(aN) and performing the division of series one obtains

A(a) d:f_ 1((1)11\\,4 — IO{MOZZ(CIO a)] - i f; 2i— 1’ (52)

where
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and
i~-1

a; == 1—jn).
= le (1—jn)
Inversion of the above quoted series gives the required function

q= ; gA* ! (5.3)

1

where

1 S 33 /s
By = g2 = g g3 = —m —Eee..
A ot N
Now, the stress distribution can be determined as
N

Ox = = (L+qm', (5.4.1)
4ab0[1+ y d,-qz‘]
i=1

i=

or

M
Oy = —————r L+ gn)*". (5.4.2)

x 0

4a?b, Y eq?i!
i=1

The above mentioned formulae are valid when ¢ < | ie. when A(a) < A,
For 0 < t < t; (where t; denotes the time of arising of the first cracks) the maximum
value A, will be for g = 1, thus

Aomax = __Z1 £ (5.5)

For t > t; cracks of external fibres will appear, the height of the cross section wili
decrease and the load will change: under constant axial force the bending moment will
increase from the value M, to M = M, + N(a; —a), thus, the eccentricity A will increase
and so will the value q. Convergence of the applied series will be secured if g < 1, thus,
the minimum value a = a* {for which stress on the whole section will still be of the same
sign), is calculated from (5.2) inserting ¢ = 1

1O[MO + N(ao e a*)}

A -
Omax Na*
where from
M 0 -+ aoN
* o 5.6
T N0, TAome) 59

In calculating the rupture time three stages must be distinguished :

(a) time of arising of first cracks—t,
(b) time of rupture of the cross section to height a*—t,
{c) time of rupture of the whole section—t,
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5.2. Time of arising of first cracks

469

For0 <t <1, wehavea = a,, 4 = g4,y = Yo, and the normal stress does not depend

on time.

Time ¢, is determined by the formula (2.7) which after using (5.4) takes the form:

fusf 1+ £ ]
i=1

Alm+ )N™(1 +go)™™

t1=

or

i=1
f, = .
LT Am+ DML +go)

When M, = 0 then g, = 0; thus, we obtain:

- {4a0b0}"'
W Am+1)N™

{4‘1(7350 Z eiqzi-l}

which is a known formula for the time of rupture of a bar under axial tension.

Distribution of continuity at t = t; is given by the formula
1+qn}"‘

\Pmi-l ,I =1__
) {14’510

5.3. Rupture time of the section to the height a*
In the time interval (0, t,) the integral of equation

&m
k4

1—Pmti(y §) = A(m+1)(_ly_)mft (1 +g’1)m/n

4b I
° Oa"‘[l-{— 3 diqu}
i=1

ay

=4

takes the form

dr.

Making use of this relation and considering the fact that
2a(t) = yo+ao,
and

Ya(t),t] =0

(57.1)

(5.7.2)

(5.8)

(59

when the rupture front reaches the established point of the ordinate y,, the equation (5.9)

can be written in the form

(t) m/n
m o 3 +q(r)[2£——~ 1]}
1= A(m+ 1)(£) f { a4 g

4b0 Oa"‘(t) {1+ Z deZi(T)}
i=1

(5.1
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From formula (5.2) a will be expressed in terms of g:

My+N 2
a=20TNe {5.1H
140,1 Z fig? !
After introducing (5.11) into (5.10) and after some simple transformations we obtain
140, 1Y fig® ')
1+4¢(1) ]2 = -1
1 0, 1 g 2i—14
) A(m+ 1)( N )m( N )mJn + zzl fzq {1) 4 5.12)
= — T. i
4h, My+N X " ‘
o o dy o 1+ Z dig?i(r)

=1

1+0,1 Z fg? N
i=1
Next we proceed in an analogous way as for large eccentricity: (5.12) is twice differen-
tiated with regard to time, and

d%q 2 ‘
7T+ Ly L3+L4+L5]( ) =0 (5.13)
where
3 2i—1)(2i—2)fig* 3
. L @-nei-27 __2emiit)
} S © ' 2
Z(zl_l)fl 2i—-2 1+q
Z (2l“l)f 22 :
— i=1 L _—
Ls ’ 4 1+¢q

140,1 Y fig?™!

L5=m

is obtained. ‘
Performing multiplications and divisions of the series in brackets one obtains:

dzq 3] dqz
— 3 gl11—] =0. 5.14
i+ ) = 10

Initial conditions are
{a)fort =t

) = qo = Z gAY ! (5.15.1)

i=
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{b) for t = t, the value dg/dt is calculated by use of the first derivate of equation (5.12)

140,1 Z fad !
dg) a1 1Hdo . (5.152)

dtt 1 Y 2t1 do 0 1 Z (21_—1 21 2

Ps=

The integral of equation (5.14) will be found substituting

dg d?q d$
_ = —p e TR —--—‘9 .
T =g G = 3. %)

This will permit to write (5.14) in form:
s &
—+( Y r,-q‘)9 = 0. {5.16)
i=0
Separation of variables and a bilateral integration gives:

9 = C, exp Z +1(1‘“) (5.17)

Making use of condition (5.12.2) one obtains:
C =g eXp( 2 ; lqa‘“‘)-

Returning to the former variable and separating the variables

o

vy
t = -1 ¢ i+1
d quI exp(i;() l+1q )

will be obtained from (5.17). After a bilateral integration we obtain

@
S; ,
C—I ;'+12t C .
1 iZ‘OiJrlq +C; (5.18)
where
! 2
S():i, Sy = Tg» Sy :‘2"71‘{‘2—27‘0,....

The constant C, is determined from condition (5.15.1)

o0

C2 — Cl Z z+1
Finally
IS .
t=0u+Ci' Y (@' —q6"") (5.19)
g:gl'f"l

is obtained.
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Damage will reach fibres ¢ = a* when g = 1. Thus,

th=1,+C; Z n;w(l—q’“) (5.20)
or
CRRSIL S . B (520.1)
fy LG Soi+l 2 o

For the limiting case g, = 1 it is evident that

t
2o,
Iy

because condition g, = 1 corresponds to such a ratio M/N which gives a vanishing stress
{for 0 < t < t;) on the lower edge. Thus, for ¢ = ¢, +ds the stress will change sign and a
large eccentricity will be dealt with. Moreover, because of Ay = (1I0My)AagN) = Apax We
then have:

M,
Nagil+——
ao( +aON)

a* = = = q,.
N(% J/I‘—A}) N(l +~A-4£)

5.4. Time of total destruction of the cross section

For time ¢ > t, compressive as well as tension stresses appear, and a large eccentricity
must thus be dealt with. The phenomenon of propagation of the rupture front will be
described by the differential e: uation (4.17), but the initial conditions, which must be given
for t = t,, will differ from the conditions (4.18), For t = t, we have:

(a) p(fz) =1 (5.21.1)

_ _da
dt,,z— S dr

It follows from equation (5.18) that

(b) (5.21.2)

t=iz"*

Y gt = 4 €0,
i=01+1

Bilateral differentiation of this dependence with regard to time gives

dg &
= C,,
df 1q 1
from where
dg _ Ci
dt 2
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Substituting here

140,1 Zi-t
1 L4, qu

21
1o g Zﬂq' 202i—1)*
i=1

|
"Me

C1 = {qs

for C, the following will be finally obtained :

fea)

101 2i—1 a
W 114, + qu Y s

(5.22)
dt [ 2I1 qO

M8

Z 21_1 2; 2

Sy

[

(asfort=1t,qg=1)
The equation (4.17) is solved in an analogous way as in Section 4. Introducing the
function G{(p} = dp/ds, and performing an integration

1 © R. .

G(p) = E, —— — Y gt 5.23

(p) lpR_leXp( l;oi“‘lp ) ( )
is obtained.

For
{ = t,, p = 1, = gl—lz
dtls=yys
where from
> S
E, =-C, =2 (5.24)

Integration of equation (5.23) gives
- Si itR_,+1
‘—§05+R_1+1p = Ei+E;.

The constant E, is determined by use of condition (5.21.1):

E, = ! -
2= LR a1 B
Thus
1 2 S; )
=_Z - (p'+R“+1-~l)+t2.

Fort =1t p=0and

(5.25)
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Denoting
| -
Cy = — 7
! 2:,(‘
¥ 4 S,‘ 2
o olbealli]
i,zm1+2,' 0 | (5.26.1)
: Cl Z S‘x
i=0
or
X -“Wmsi
, 1y 2 ShitR_ 412
CTitE T — L (5.26.2)
2 1 1 Z S,‘ i={
i=0
is obtained.
Making use of equation (5.20) one obtains:
s,
t 21 & s i+R_, +1 2
E = e _]_"“+i__m 2
Iy C, i:zol+1( %) Z 520

Z S i=0

6. NUMERICAL ANALYSIS

The ratio of the total time of destruction of the rectangular cross section to the time of
arising of first cracks is determined by the formulae (4.24) and (5.27)

o S .
Z LS Po
Soit+R_(+1
l+2 ° t ! fOX' A > Amin
. Z Uipo
tz =ﬁ i=0 i
I - S;
. =Tl
1420 | T (- g 1)+ 20 "” 1+ AL SIRAN SN [ S
61 i:OI—Fl Z .S im0
i=0

As has already been mentioned in the introduction, the time of arising of the first
cracks is often the adopted criterion of destruction. Evaluation of numerical values of
terms describing this process in the above given equations from the moment when the
first cracks arise to that of total destruction is now of great interest. These terms are func-
tions of two parameters: material constant m = n (all series coefficients are expressed by
this parameter) and initial loads M, and N, expressed by q,, and p,, respectively.
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For pure tension (g, = 0) we have

ac

0,1 2i—1)fgs' ? ,
1iméi=1imli° ) > Sido =0
0 0 : i=
ol 1 ol do 140, 1 Zfiq(z)z—l Y
i=1

and thus
tZ

=z =1 6.1
y , (6.1)

q0=0

which means that under tension the time of arising of the first cracks (independent of m
and therefore of temperature) is the same as the time of total destruction of the whole
Cross section.

For pure bending, p, = 0, the ratio t,/t, is determined by the formula (4.24):

2
2m—1"

tZ

' (6.2)

pPo=0

As can be seen, this ratio depends on the material constant m and reaches an upper limit
when m — 1:

The diagram t,/t, is shown in Fig. 3. Calculations were restricted to at most five terms
of the individual series. An approximation was applied in calculating the series K,,
because of its divergence for p, > 0-3, by means of Newton’s formula, wherein the poly-
nomial terms of the fifth degree were maintained.

30
28 -
22 |-
20 -
12 -
1o
os -
06~
oal-
oz p

P O 02 04 06 08 10 08 06 04 02 0 g

FiG. 3.
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7. CONCLUSIONS

The analytical and numerical calculations which were carried out under the assumption
m = n permit to advance two basic conclusions.

(1) The ratio of time of total destruction to the time of arising of the first cracks depends
on the ratio of the bending moment and the normal force at t = 0, on temperature
and on the kind of material (constants m and n). This ratio lies generally close to
one; only for ratios M to N close to the case of pure bending (large M) and for
material constant value close to m = 1, is this ratio considerably greater than one.

(2) The calculations are complicated even for a simple shape of the cross section as a
rectangular one, and considerable difficulties are encountered. The use of a com-
puter program (for an arbitrary shape of the cross section) would simplify the
calculations.

In view of the foregoing it seems that in engineering calculations the time t, of the
appearance of the first cracks can be adopted as the criterion for a safe life span of the
structure.

The fact that the assumption of stationary creep up to the time of total destruction
caused a too high value of the above calculated ratio t,/t, is an advantageous circumstance.
When nonstationary creep is taken into account this ratio would be still closer to unity,
even for pure bending.
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AocrpakT—PaccmaTpuBaeTcs 3a1a4a MOHOTO pa3pyLleHMs 6alKy NPAMOYIONBHOIO IONEPEYHOI O CEYEHUS,
MOJ BJIMSAHUEM MOMEHTa U3ruba ¥ OCeBON PAacTATHBAIOWICH CHIIbI. 3aJavya OCHOBaHA HA ABYX (QyHOameH-
TaJXbHBIX 3aKOHAX: 3aKOHE Moi3ydecTH ONKBHCTA M 3aKOHE Xpymkoro paspyuendss Kavanosa. Ucnonb-
3YETCA METOJ CTEMEHHbIX PANOB MUl PellieHHs OCHOBHOIO MHTETPANIbHOTO YPABHEHMS M AT BbINOJIHEHUS
pacyeTosB.



